Авторизация
Забыли пароль? Введите ваш е-мейл адрес. Вы получите письмо на почту со ссылкой для восстановления пароля.
После регистрации вы можете задавать вопросы и отвечать на них, зарабатывая деньги. Ознакомьтесь с правилами, будем рады видеть вас в числе наших экспертов!
Вы можете войти или зарегистрироваться, чтобы добавить ответ и получить бонус.
Для нахождения длины стороны треугольника r необходимо знать другие стороны и углы треугольника.
Если известны длины двух сторон треугольника и угол между ними, можно использовать теорему косинусов. Формула для нахождения третьей стороны треугольника по длинам двух сторон и углу между ними выглядит следующим образом:
c^2 = a^2 + b^2 — 2ab*cos(C),
где c — третья сторона треугольника, a и b — известные стороны, C — угол между ними.
Если известны длины всех трех сторон треугольника, можно использовать формулу для нахождения радиуса описанной окружности вокруг треугольника (r). Формула выглядит следующим образом:
r = (a*b*c) / (4*площадь треугольника),
где a, b и c — длины сторон треугольника.
Если известны длины двух сторон треугольника и высота, опущенная на одну из сторон, можно использовать формулу для нахождения площади треугольника (S) и далее находить радиус описанной окружности (r). Формула для нахождения площади треугольника выглядит следующим образом:
S = (a*h) / 2,
где a — длина стороны треугольника, h — высота, опущенная на эту сторону.
После нахождения площади треугольника, радиус описанной окружности можно найти по формуле:
r = (a*b*c) / (4*S),
где a, b и c — длины сторон треугольника, S — площадь треугольника.
В зависимости от доступных данных, можно использовать одну из этих формул для нахождения r в треугольнике.
Напишите, почему вы считаете данный ответ недопустимым: